
ISyE 6740 – Fall 2021
Strava Segment Analysis with Latent Dirichlet Allocation

Andrew Traylor (902815209)

Problem Statement

Presently, a multitude of cyclist-tracking-apps exist which provide riders with summary
information such as GPS route, average speed, elevation change, and trip duration. The most
popular of such activity-tracking apps, Strava, facilitates activity sharing among users, if desired.
Perhaps Strava’s most widely used feature is the creation and tracking of user-defined
“Segments,” portions of a path or road which the user has traveled. Riders can create these
segments from their activities, upload them to the Strava platform, and compare times with
other users.

Strava also provides a “Routes” feature which allows riders to create routes based on three
criteria:

1) Distance. An approximation of how far the rider would like to travel.
2) Elevation. An option to avoid hills or add elevation gain.
3) Surface. Optimize for mostly paved or mostly dirt routes.

The Strava algorithm generates these routes based on “popular waypoints”, in addition to the
filtering criteria above. The full web application also provides the option to select the most direct
route, indifferent to the above criteria.

By generating recommended routes based on the most trafficked ride “segments,” Strava likely
recommends routes that do not optimize for rider safety or comfort. Furthermore, certain users
may have different revealed “comfort” preferences such as avoiding intersections, traffic, etc.
that differ from the average Strava rider.

Given that a rider’s route can be viewed as a string of segments, a more thoughtful
recommender might take into account segment nuance, rather than relying solely on segment
density as a means of assessment. There may be a subset of riders less concerned with fitness
and/or competition with peers, and more concerned with the features of the segments that
compose the route.

This paper will attempt to use topic modeling, a technique common in natural language
processing, to identify groups of segments which may be lost in simple popularity, distance,
elevation, and surface filters.

Data Source

“Strava Metro” is a program which displays aggregated user data to help urban planners and
other civic groups understand cities’ transportation needs. Strava Metro has been made available

1



to state and city governments for free, but at the time of writing, access for other individuals
remains restricted. Therefore, the publicly available Strava API was used to extract segment
data.

US cities were first split into three bins based on population counts provided by the US Census
Bureau:

- Large: Greater than 1,000,000
- Mid-size: Between 100,000 - 1,000,000
- Small: Less than 100,000

To reduce the effects of one size or style of city dominating the analysis, seven cities were
randomly sampled from each size category for segment retrieval. A full list of the sampled cities
can be found in Figure 1 of the Appendix.

The Strava API endpoint of interest returned the top ten most-travelled segments within a
bounding box described by geographic coordinates. Additionally, the Strava API maintains
15-minute and daily request limits of 100 and 1,000 requests, respectively. The segment
retrieval problem therefore became one of obtaining the most segments, per city, within the
constraints of rate usage.

Rather than building a 10x10 grid around the city center (100 API requests), which might result
in empty or nearly-empty queries, or building concentric boxes outward from the city center,
quadtrees were constructed for each location of interest. A quadtree, or in this case, a
point-region quadtree, is a tree data structure that partitions an area into four subspaces, each
with some max capacity. If the subspace (node) contains more than the max number of points,
it is further subdivided into four nodes. Once a node contains fewer than the max capacity of
points, it is no longer partitioned and becomes a leaf.

Therefore, in pseudo-code, the quadtree recursion steps for Strava API segment retrieval were
as follows:

For each city:

1) Find the city center
2) Build a 25-square-mile bounding box around this center
3) Query the API for the top ten segments
4)

i) If the number of segments returned is ten (the maximum per the API call):
divide the box into four smaller boxes.

ii) Else:
end the query.

5) Repeat until the API limit is reached.

For example, this algorithm returned 332 Strava segments for the city of Atlanta, Georgia, as
represented in quadtree form here (endpoints of segments shown):

2



After a line was obtained for each segment, buffers were added around the lines using the
GeoPandas python library, such that the segments were transformed into queryable polygons;
inherently, lines cannot contain features, but polygons can. For example, here are the segments
(red) and “buffered” segments (blue, enlarged for illustration) for the city of Atlanta:

3



For each buffered segment, the OpenStreetMap database was queried using the python library
OSMnx. OpenStreetMap is an open-source project analogous to a geographic wikipedia which
contains millions of user-uploaded key-value pairs known as tags. These tags describe various
features of elements found on a map. For example, the “highway=residential” tag describes a
road which runs along a residential area. Only tags with at least 50,000 entries in the OSM
database were queried. The result of the OSMnx queries was a count of occurrences of tags for
each segment. For example, the segment with ID ​​27581807 contained three tags of
“surface=concrete”, indicating a concrete surface at three various “ways” within the segment.

The final data matrix contained 1,050 rows (representing segments), and 399 columns
(representing counts of OSM tags).

“Topic” Modeling and tf-idf

After extraction of the raw tag counts, the parallels between a) segments and counts of tags,
and b) documents and counts of words became evident. Therefore, the general approach for
finding similarity among Strava segments became that of NLP-esque topic modeling. Topic
models are built around the idea that, hidden between documents and the words they contain,
exists a middle layer of topics. Documents contain topics, and topics contain words. Therefore,
analysis can be conducted to uncover these “latent” or unobserved topics. Regarding Strava, it
can be said that segments (documents) are composed of k segment types (topics), and these
segment types have a different composition of OSM tags (words).

Term frequency-inverse document frequency (tf-idf) is commonly used in the field of natural
language processing to scale document-term matrices. The general idea is to scale raw word
counts so that the counts of words appearing across many documents are reduced, while the
counts of words that appear infrequently across documents (so-called “rare” words) are
increased. Tf-idf scales counts through multiplication with a constant (Ramos, 2003):

where is the tf-idf scaled count, is the raw count, D is the number of documents in the
corpus, and is the number of documents in which the word appears.

Tf-idf helps to reduce outlier counts that might skew correlation and variance statistics when
performing dimensionality reduction, such as principal components analysis, or which might
affect similarity metrics within certain techniques like k-means clustering. An additional
advantage of tf-idf is the retention of sparsity in the data matrix; other common scaling methods
such as min-max-scaling and standard scaling require either normalization or centering of the
data, transforming sparse sparse matrices into dense matrices and subsequently introducing
computational overhead. Worse, traditional scaling methods may introduce nonzero values for
terms (tags) that were not previously present in a document (segment).

The Strava data matrix lends itself nicely to tf-idf scaling. It is heavy-tailed in that some tags
appear in a large percentage of segments, while others appear only once or twice:

4

https://www.codecogs.com/eqnedit.php?latex=w_%7Bd%7D#0
https://www.codecogs.com/eqnedit.php?latex=f_%7Bw%2C%20d%7D#0
https://www.codecogs.com/eqnedit.php?latex=f_%7Bw%2C%20D%7D#0


An attempt at Latent Semantic Analysis (LSA)

In natural language processing, latent semantic analysis is the performance of truncated singular
value decomposition (SVD) on a document-term matrix to uncover the hidden topics within a
document. The document-term matrix consists of redundant, noisy features, so the general idea
is to project the features into a lower-dimensional space, where the number of dimensions
represents the number of topics.  An advantage of using truncated SVD over traditional SVD is
the preservation of sparsity in the tf-idf data matrix, since traditional SVD requires centering of
the data. The principal components post-SVD represent the latent topics that rest in between the
document (segment) and the words (tags). Optionally, metrics such as cosine similarity can be
computed to assess document similarity. In this paper, semantic analysis is a misnomer, but the
analogy holds well.

In the context of Strava, the input of the LSA is the segment-tag matrix whose decomposition
through truncated SVD results in the following three matrices:

5

https://www.codecogs.com/eqnedit.php?latex=M%20%3D%20U%20*%20%5CSigma%20*%20V%5ET#0


Here, M represents the original tag X segment matrix, represents the tag X topic matrix
(projection of tags into topic space), represents singular values of the topics, and represents
the topic X segment matrix. To keep topics as the columns, can be analyzed as the segment X
topic matrix.

The most glaring problem with the truncated SVD output is its lack of interpretability. The topics
are hardly intuitive, and both the tag weightings within topics and the topic weightings within
segments are arbitrarily positive or negative. For example, projecting each segment into a three
dimensional-topic space results in the following geometric interpretation

Where each segment has a set of topic (component) loadings such as:

Segment 1st
topic

2nd
topic

3rd
topic

0 0.0011 0.0005 0.0008

1 0.0211 0.0121 -0.0018

2 0.002 0.0033 0.0001

3 0.0682 -0.0115 -0.0108

4 0.0054 0.0071 0.0006

While traditional clustering approaches such as k-means or Gaussian mixture models could have
been used in this new lower-dimensional space to group segments, or a cosine similarity
approach as noted above, a lack of interpretability ultimately pushed the analysis away from an
SVD-based approach.

6

https://www.codecogs.com/eqnedit.php?latex=U#0
https://www.codecogs.com/eqnedit.php?latex=%5CSigma#0
https://www.codecogs.com/eqnedit.php?latex=V%5ET#0
https://www.codecogs.com/eqnedit.php?latex=V#0


An attempt at Latent Dirichlet Allocation (LDA)

The central idea behind latent Dirichlet allocation in the context of NLP is that documents can be
described by a distribution of topics, and, in turn, each topic can be described by a distribution of
words.

The process for generating a document, w, within a corpus (collection of documents, M) can be
visualized as follows, from the original latent Dirichlet allocation paper (Blei et al., 2003):

where the outer plate represents documents across the entire corpus (M), and the inner plate,
N, represents topics (z) and words (w) within those documents. represents a Dirichlet
distribution, tuned by . represents the Dirichlet distribution of words within a topic.

Alpha and beta may be thought of as “concentration” parameters that control the spread of the
Dirichlet distributions; by controlling alpha and beta one controls topic and word sparsity within
a document, respectively. For example, an alpha < 1 will result in a topic mixture that contains a
few, if not one, topic, while an alpha > 1 will generate a topic mixture that contains most, if not
all, topics.

LDA is a generative, probabilistic model, designed to reproduce documents that resemble the
original corpus using the , , and parameters learned from the training process. In practice,
the goal is rarely to generate new documents. Rather, the aim is to infer the probabilistic
composition of both documents and topics by maximizing the likelihood of word occurrence
across a corpus using the document-topic distributions and the topic-word distributions. More
mathematically, the objective is to find parameters and that maximize the (marginal) log
likelihood of word occurrence across the corpus (Blei et al., 2003):

This is typically done through a variational expectation-maximization procedure, or through
Gibb’s sampling.

The output of the LDA algorithm is a distribution of topics within each document, and a
distribution of terms within each topic. In the case of the Strava data matrix, the output of LDA

7

https://www.codecogs.com/eqnedit.php?latex=%5Ctheta#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctheta#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0


is a distribution of topics for each segment, and a distribution of OSM tags within each of those
topics. The most notable drawback of LDA is that the topics typically require human
interpretation and labelling.

Evaluation and Final Results

For LDA, alpha and beta are key hyperparameters of consideration during model training, as is
the number of topics. As such, a grid search was conducted using the LatentDirichletAllocation
class within scikit-learn with the following combinations of hyperparameters:

- Number of topics: 3-10
- Document topic prior ( ): [0.05, 0.1, 0.5, 1, 5, 10]
- Topic word prior ( ): [0.05, 0.1, 0.5, 1, 5, 10]

Models were compared on the basis of mean five-fold cross-validation “Perplexity”, defined as
follows for a set of M documents (Blei et al., 2003):

A lower perplexity score implies a greater log likelihood of word occurrence across the corpus.

The best model had and parameters of 0.1, and the number of topics was selected to be 10.
Lower alpha and beta values, along with higher topic counts, were associated with lower mean
perplexity scores (topic count shown in legend):

8

https://www.codecogs.com/eqnedit.php?latex=%5Calpha#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0


See Figure 2. of the appendix for a list of parameters associated with the top ten training scores.

Regarding topic coherence, the tags appeared to explain a consistent theme for each topic. The
ten types of Strava segments could be loosely viewed as centering on the following themes, after
examining the probabilities of tags within each topic:

Topic Themes

1 wooded/natural

2 minor access roads

3 buildings; restaurants; retail

4 bike and foot paths; benches; park likely

5 pedestrian crossings/sidewalks; asphalt/concrete
surfaces; many traffic signals

6 curb/unmarked crossing/sidewalk

7 residential areas

8 well-lit, minor highways

9 well-lit, pedestrian walkways

10 minor highways with possible bus stops

See Figure 3. of the appendix for a visual of the top ten tags per topic, as represented by their
probability of occurrence within each of the topics.

9



As for real-world coherence, further analysis is required to assess topic alignment with
on-the-ground reality. For example, for the city of Seattle, it remains to be seen if the dominant
topics indicated for each sampled segment actually contain those features (color by dominant
topic):

Cyclist feedback for verification is paramount. However, it may be possible to validate the results
by looking at the breakdown of topics by cities, and confirming that more or less bike-friendly
cities contain a greater/lower percentage of certain segment types.

Potential areas of future research include:

- Training the LDA model on a much larger number of Strava segments. A relatively
low proportion of features (121) were used as the segment OSM “vocabulary.” While the
analysis captured most of the relevant OSM tags, it could be expanded.

- The effects of more extensive feature engineering prior to model training,
particularly as it pertains to combining rare Strava tags into categories with higher counts,
perhaps aggregating by key.

- Evaluating model hyperparameters through topic coherence scores rather than
“perplexity.”

- The development of a better route recommender. The current Strava “recommend
by route density” algorithm does not account for segment nuance and the probability of
certain features being present on a route.

10



In conclusion, the research appears promising that latent Dirichlet allocation could assist in the
identification of safer and perhaps more pleasurable Strava segments, beyond the information
provided by simple filtering metrics such as popularity, distance, and terrain. LDA probabilistic
interpretations of segment OpenStreetMap tags could be incorporated in future recommendation
algorithms to help improve the experience of cyclists, particularly those less representative of
the average Strava rider.

References

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. the Journal of machine Learning research, 3,
993-1022.

Ramos, J. (2003, December). Using tf-idf to determine word relevance in document queries. In Proceedings of the first
instructional conference on machine learning (Vol. 242, No. 1, pp. 29-48).

11



Appendix

Figure 1.

NAME POP

Philadelphia, PA--NJ--DE--MD 5441567

Atlanta, GA 4515419

Seattle, WA 3059393

St. Louis, MO--IL 2150706

San Antonio, TX 1758210

Pittsburgh, PA 1733853

Jacksonville, FL 1065219

New Orleans, LA 899703

Tucson, AZ 843168

Albany--Schenectady, NY 594962

Colorado Springs, CO 559409

Charleston--North Charleston, SC 548404

Augusta-Richmond County, GA--SC 386787

Ann Arbor, MI 306022

Wenatchee, WA 67227

Saratoga Springs, NY 64100

Kingston, NY 57442

Cookeville, TN 44207

Lebanon--Hanover, NH--VT 25690

Laconia, NH 18636

Eureka, MO 11260

Figure 2.

param_doc_topic
_prior

param_n_components param_topic
_word_prior

mean_test_score std_test_score rank_test
_score

0.1 10 0.1 -53906.871616148100 20611.584326787700 1

0.05 10 0.1 -53955.57000490030 20685.471763993100 2

0.1 10 0.05 -54030.153947137200 20602.04556154840 3

0.05 10 0.05 -54075.17880072040 20667.07871014970 4

0.1 9 0.1 -54128.44189485400 20657.92582386890 5

0.05 9 0.1 -54169.380510404100 20725.550240689900 6

0.5 10 0.1 -54245.93529012620 20470.474193667300 7

0.1 9 0.05 -54249.42905169210 20643.69650255930 8

0.05 9 0.05 -54295.90245269950 20706.353829552300 9

0.5 10 0.05 -54332.387173288300 20452.48882179110 10

12



Figure 3.

13


